
Music Domain

Team Pick A Noun (Group 18)
Student 1 ID: Anthony Salvati, ams6995

Student 2 ID: Michael Biedermann, mjb7036
Student 3 ID: Eli Lurie, ehl8022

Student 4 ID: Jack Sebben, jas8726
Student 5 ID: Jaden Seaton, jis6849

November 18, 2022

1 Introduction

The domain for which our database and manager will be built for is the
music domain. Our plan for this project will be to use a Java driven console
application using the command line. The application will use JSON objects
to communicate with the server with SQL.

1

2 Design

2.1 Conceptual Model

In creating the EER diagram, we had to consider what unique identifiers each
entity would have, their relationships to other entities, and what those rela-
tionships entailed. For instance, a user has the identifier of a unique username
and relates to a playlist by creating them. With the music domain, songs
are the primary focus, as shown by every other entity having a relationship
to them.

2

2.2 Reduction to tables

The User entity has been reduced to a table with the Username as a primary
key, as this is the least likely to change. The same goes for:

• Artist and their name,

• album and AID (album ID)

• song and SID (song ID)

• genre and GName

• playlist and PID (playlist ID)

Playlists also have a foreign key for the user, which is unique, as shown in
the reduction to tables above. The genre-album relationship was reduced
to a table that included the AID and Gname, as those were the key factors
in the relationship. Similarly, albums having songs became a table with a
SID, AID, and track number, albums by artists are related by the AID and
AName, songs are related to users by the SID and Username, songs are found
on playlists by SID and PID, and songs can be related to artists by SID and
AName.

2.3 Data Requirements/Constraints

The most important attributes of entities from the above diagram are the
unique email address for each user (since username may change over time),

3

the playlist ID (PID), song ID (SID), genre name (GName) album ID (AID),
and artist name (AName). It is critical that each of these are unique, as
they are they key identifiers for each of their respective entities. Another
constraint of this relational model is that, when created, all songs must to
have an album and vice versa. In the same vein, all artists must have at least
one song, and all songs must have at least one artist.

4

2.4 Sample instance data

5

3 Implementation

Sample SQL statements used to create tables:

CREATE TABLE album (
aid INTEGER PRIMARY KEY,
release date DATE NOT NULL,
name VARCHAR(50) NOT NULL)

CREATE TABLE song playlist (
sid INTEGER REFERENCES song,
pid INTEGER REFERENCES playlist,
PRIMARY KEY (sid, pid))

Sample SQL statements to populate data:

“INSERT INTO genre VALUES(‘ ” + genre + “ ’)”

“INSERT INTO artist VALUES(‘ ” + artist + “ ’)”

“INSERT INTO album artist VALUES(” + str(aid) + “, ‘ ”
+ currentArtist + “ ’)”

“INSERT INTO album VALUES(” + str(aid) + ”, ‘ ” + str(currentDate)
+ ” ’, ‘ ” + song + ” ’)”

“INSERT INTO song VALUES(” + str(sid) + ”, ‘ ” + song + ” ’, ‘ ”
+ str(currentDate) + ” ’, ” + str(randLength) + ”)”

“INSERT INTO album song VALUES(” + str(sid) + ”, ” + str(aid)
+ ”, ” + str(trackNum) + ”)”

“INSERT INTO song artist VALUES(” + str(sid) + ”, ‘ ”
+ currentArtist + ” ’)”

“INSERT INTO genre song VALUES(” + str(sid) + ”, ‘ ”
+ genre + ” ’)”

6

“INSERT INTO genre album VALUES(” + str(aid) + ”, ‘ ”
+ genre + ” ’)”

The data was loaded into the database using a Python script reading
from a csv file of a subset of the million song dataset. The file contained
song names, artist names, and release years. First, genres were added from
a separate list of genres. Artists were added using the artist names from the
file. Albums were created by using song names as album names, and each
album contains a random number of songs from 1 to 12. Each album’s date
was taken from the song’s date and random months and days were used;
each album was assigned one or more random genres from a list of genres.
Album IDs (aid) were generated sequentially. Songs were added using the
song name from the file, and song IDs (sid) were generated sequentially.
Song artist relationships were added using the artist name corresponding to
the song name in the file. Album song relationships were added using the
generated aid and sid numbers and songs were added to albums with sequen-
tial track numbers until the album reached its designated number of songs.
About 6000 songs were added, about 900 artists were added, and about 1500
albums were added, along with many relationships between them.

Sample insert statements:

PreparedStatement pst = conn.prepareStatement(”INSERT INTO playlist
VALUES (?, ?, ?)”);
pst.setInt(1, newID);
pst.setString(2, username);
pst.setString(3, playlistName);

PreparedStatement insertQuery = conn.prepareStatement(”INSERT INTO
song playlist (sid, pid) ” + ”SELECT ?, ? WHERE NOT EXISTS (SELECT
* FROM song playlist WHERE sid = ? and pid = ?)”);
insertQuery.setInt(1, sid);
insertQuery.setInt(2, collection.pid);
insertQuery.setInt(3, sid);
insertQuery.setInt(4, collection.pid);

7

PreparedStatement addFollow = conn.prepareStatement(”INSERT INTO user user
VALUES (?, ?)”);
addFollow.setString(1, this.currentUsername);
addFollow.setString(2, friendEmail);

PreparedStatement pst = conn.prepareStatement(”INSERT INTO users
VALUES (?, ?, ?, ?, ?, ?, ?, ?)”);
pst.setString(1, email);
pst.setString(2, newUsername);
pst.setString(3, Integer.toString(hashPass));
pst.setString(4, name[0]);
pst.setString(5, name[1]);
pst.setDate(6, todayDate);
pst.setDate(7, todayDate);
pst.setString(8, saltValue);

PreparedStatement addListen = conn.prepareStatement(”INSERT INTO user song
VALUES (?, ?)”);
addListen.setInt(1, sid);
addListen.setString(2, username);

4 Data Analysis

4.1 Hypothesis

We hypothesized that people who liked a particular genre would also be in-
clined to listen to another similar genre, such as metal listeners all listening
to rock next most or hip hop to pop.

We ended up seeing that some genres are tied together, such as indie
users liking pop and vice versa.

4.2 Data Preprocessing

We did not do any data preprocessing aside from using queries to extract
the data from the database because there were no issues with the data that
needed to be fixed. The indices of our database for all of the tables were

8

B+-trees in order to maximize the efficiency of our queries. We used com-
plex queries to extract the data, which are shown below.

Used to extract the top 2 genres for each user:
WITH subquery AS (SELECT user genre.name AS name, user genre.listen count
AS listen count, user genre.username AS username, row number() OVER
(PARTITION BY username ORDER BY listen count DESC) AS rank FROM
(SELECT genre song.genre name AS name, SUM(user song.listens) AS lis-
ten count, user song.username AS username FROM user song, genre song
WHERE user song.sid = genre song.sid GROUP BY user song.username,
genre song.genre name) AS user genre)
SELECT q1.name as genre1, q2.name as genre2, q1.username FROM sub-
query q1, subquery q2 WHERE q1.username = q2.username AND q1.rank
= 1 AND q2.rank = 2

Used to extract song listening data: SELECT title, release date, length,
username, listen date, listens, genre name FROM song JOIN user song ON
song.sid = user song.sid JOIN genre song ON genre song.sid = song.sid;

9

4.3 Data Analytics & Visualization

This graph represents the amount of listen per song release year.

10

This graph represents the popularity of genres based on song listens.

The relation between the most popular genre a listener enjoys and their
second favorite genre.

4.4 Conclusions

From the graphs above, you can see that the most listened songs were be-
tween the release years of 2005 and 2008 and the least listened songs were
between the release years of 1993 and 1994. The most popular genres in ac-
cording to listen count is pop and our least popular genre is rap. Our genre
recommendations are very accurate to the real world, in the way that indie
is most similar to pop, country is most similar to folk, and metal is most
similar to rock.

5 Lessons Learned

Writing the complex queries for phase 4 was challenging, especially the song
recommendation query in our program. Which query has multiple subqueries
and joins many tables from our database. This took many tries to get working
correctly, but helped us to better understand how to write complex SQL
queries.

11

Another issue faced in the project was deciding how to store the listen
count for songs. We originally had a table where username and sid were the
primary keys so we could only record whether a user had ever listened to a
song, and weren’t able to record how many times that song was listened to
or the date the user listened to it. We changed the attributes of this table
in phase 4 to have username, sid, and listen date to be the primary key, as
well as including a listen count, which let us count every time a user listened
to a song and what date that occurred on. We learned that being flexible
with our design is important, as our previous design was inadequate, despite
thinking originally that it would be sufficient.

6 Resources

We used complex queries to export data into Google Sheets and LucidChart
in order to make the graphs shown above.

7 SQL Appendix

Extractx the top 2 genres for each user for data analysis:
WITH subquery AS (SELECT user genre.name AS name, user genre.listen
count AS listen count, user genre.username AS username, row number()
OVER (PARTITION BY username ORDER BY listen count DESC) AS rank
FROM (SELECT genre song.genre name AS name, SUM(user song.listens)
AS lis- ten count, user song.username AS username FROM user song, genre
songWHERE user song.sid = genre song.sid GROUP BY user song.username,
genre song.genre name) AS user genre) SELECT q1.name as genre1, q2.name
as genre2, q1.username FROM sub- query q1, subquery q2WHERE q1.username
= q2.username AND q1.rank = 1 AND q2.rank = 2

Extracts song listening data for data analysis:
SELECT title, release date, length, username, listen date, listens, genre name
FROM song JOIN user song ON song.sid = user song.sid JOIN genre song
ON genre song.sid = song.sid;

Gets the 50 most listened to songs in the last month:
SELECT song.title, song artist.artist name, album.name, song.length, songs listened.listen count

12

FROM song, song artist, album, album song, (SELECT sid, SUM(listens)
AS listen count FROM user song WHERE listen date ¿ ? GROUP BY sid)
songs listened WHERE song.sid = songs listened.sid AND song artist.sid =
song.sid AND album song.sid = song.sid AND album.aid = album song.aid

Gets the 50 most listened to songs among the user’s friends:
SELECT song.title, song artist.artist name, album.name, song.length, songs listened.listen count
FROM song, song artist, album, album song, (SELECT sid, SUM(listens)
AS listen count FROM user song WHERE username IN (SELECT user-
name2 FROM user user WHERE username1 = ?) GROUP BY sid) songs listened
WHERE song.sid = songs listened.sid AND song artist.sid = song.sid AND
album song.sid = song.sid AND album.aid = album song.aid” ORDER BY
songs listened.listen count DESC, song.title ASC, song artist.artist name ASC
LIMIT 50

Gets the top 5 genres of the current month:
SELECT genre song.genre name, SUM(songs listened.listen count) AS genre listen count
FROM genre song, (SELECT sid, SUM(listens) AS listen count FROM
user song WHERE listen date ¿ ? GROUP BY sid) songs listened WHERE
genre song.sid = songs listened.sid GROUP BY genre song.genre name OR-
DER BY genre listen count DESC LIMIT 5

Recommends 20 songs that have been listened to by users with similar top
genres:
SELECT DISTINCT song.title AS title, song artist.artist name AS artist, al-
bum.name AS album, song.length AS length, random() FROM song artist,
album, album song, song, user song WHERE user song.username IN (SE-
LECT DISTINCT username FROM (SELECT user genre.name AS name,
user genre.listen count AS listen count, user genre.username AS username,
row number() OVER (PARTITION BY username ORDER BY listen count
DESC) AS rank FROM (SELECT genre song.genre name AS name, SUM(user song.listens)
AS listen count, user song.username AS username FROM user song, genre song
WHERE user song.sid = genre song.sid AND user song.username != ? GROUP
BY user song.username, genre song.genre name) AS user genre) genre ranks
WHERE genre ranks.rank ¡= 3 AND name IN (SELECT genre song.genre name
FROM user song, genre songWHERE user song.username = ? AND user song.sid
= genre song.sid GROUP BY genre song.genre name ORDER BY SUM(user song.listens)
DESC LIMIT 3)) AND song.sid = user song.sid AND song artist.sid = song.sid

13

AND album song.sid = song.sid AND album.aid = album song.aid AND
song.sid NOT IN (SELECT sid FROM user song WHERE username = ?)
ORDER BY random() LIMIT 20

14

